3 resultados para 030203 Inorganic Green Chemistry

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’obiettivo di questo lavoro è lo studio della funzionalizzazione del fenolo mediante vie sintetiche “green”, che utilizzino quindi reagenti non clorurati e catalizzatori eterogenei, quindi facilmente recuperabili e riutilizzabili. Esistono però altri derivati fenolici di interesse commerciale, quali il catecolo, in quanto reagente di partenza per svariate molecole (tra cui appunto il DOPET) utilizzate in vari ambiti applicativi (alimentare, cosmetica, farmaceutica, agrochimica). In particolare, lo studio è stato focalizzato sulla sintesi dell’IDROSSITIROSOLO (o DOPET). Le prove effettutate con fenolo non hanno portato alla formazione del composto desiderato, ma di altri prodotti che comunque hanno interesse commerciale; ad esempio, è stato ottenuto il 2-fenossietanolo con elevata resa e selettività. Oltre al fenolo, ho studiato la reattività del metilendiossobenzene; con entrambi è stato ottenuto (seppur con basse rese) l’attacco all’anello da parte dell’etil gliossilato, formando così un intermedio potenzialmente utile per la sintesi dell’idrossitirosolo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Phenoxyethanol (ethylene glycol monophenyl ether) is used as solvent for cellulose acetate, dyes, inks, and resins; it is a synthetic intermediate in the production of plasticizers, pharmaceuticals, and fragrances. Phenoxyethanol is obtained industrially by reaction of phenol with ethylene oxide, in the presence of an homogeneous alkaline catalyst, typically sodium hydroxide. The yield is not higher than 95-96%, because of the formation of polyethoxylated compounds. However, the product obtained may not be acceptable for use in cosmetic preparations and fragrance formulations, due to presence of a pungent “metallic” odor which masks the pleasant odor of the ether, deriving from residual traces of the metallic catalyst. Here we report a study aimed at using ethylene carbonate in place of ethylene oxide as the reactant for phenoxyethanol synthesis; the use of carbonates as green nucleophilic reactants is an important issue in the context of a modern and sustainable chemical industry. Moreover, in the aim of developing a process which might adhere the principles of Green Chemistry, we avoided the use of solvents, and used heterogeneous basic catalysts. We carried out the reaction by using various molar ratios between phenol and ethylene carbonate, at temperatures ranging between 180 and 240°C, with a Na-mordenite catalyst. Under specific conditions, it was possible to obtain total phenol conversion with >99% yield to phenoxyethanol in few hours reaction time, using a moderate excess of ethylene carbonate. Similar results, but with longer reaction times, were obtained using a stoichiometric feed ratio of reactants. One important issue of the research was finding conditions under which the leaching of Na was avoided, and the catalyst could be separated and reused for several reaction batches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of inorganic carbon chemistry of the coastal ocean is conducted in the Gulf of Cádiz (GoC). Here we describe observations obtained during 4 sampling cruises in March, June, September and November 2015. The primary data set consists of state-of-the-art measurements of the keystone parameters of the marine CO2 system: Total Alkalinity (TA), pH, dissolved inorganic carbon (DIC). We have then calculated aragonite and calcite saturation state. The distribution of inorganic carbon system parameters in the north eastern shelf of the Gulf of Cádiz showed temporal and spatial variability. River input, mixing, primary production, respiration and remineralization were factors that controlled such distributions. Data related to carbonate saturation of calcite and aragonite reveal the occurrence of a supersaturated water; in any case, both species increased with distance and decreased with depth. The carbon system parameters present a different behaviour close to the coast to offshore ad at deeper water. In this area six water masses are clearly identified by their different chemical properties: Surface Atlantic Water, North Atlantic Central Water (NACW) and Mediterranean Water (MOW). Moreover, with this work the measurement of calcium in seawater is optimize, allowing a better quantification for future work of the saturation state of CaCO3.